Temperature and Precipitation Plot for Oklahoma City, Oklahoma for 2020

http://xmacis.rcc-acis.org/
Rainfall Summaries by Oklahoma Climate Division

Calendar Year 01-Jan-2020 through 03-May-2020

<table>
<thead>
<tr>
<th>Climate Division</th>
<th>Total Rainfall</th>
<th>Departure from Normal</th>
<th>Pct of Normal</th>
<th>Rank since 1921 (88 periods)</th>
<th>Driest on Record</th>
<th>Wettest on Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Central</td>
<td>5.94"</td>
<td>-1.11"</td>
<td>84%</td>
<td>43rd driest</td>
<td>0.66" (1996)</td>
<td>14.33" (1957)</td>
</tr>
<tr>
<td>Central</td>
<td>12.37"</td>
<td>+2.18"</td>
<td>121%</td>
<td>16th wettest</td>
<td>2.32" (1936)</td>
<td>24.23" (1990)</td>
</tr>
<tr>
<td>S. Central</td>
<td>17.06"</td>
<td>+5.06"</td>
<td>142%</td>
<td>7th wettest</td>
<td>4.69" (2003)</td>
<td>33.55" (1990)</td>
</tr>
<tr>
<td>Statewide</td>
<td>12.91"</td>
<td>+2.82"</td>
<td>128%</td>
<td>13th wettest</td>
<td>3.01" (1936)</td>
<td>22.05" (1990)</td>
</tr>
</tbody>
</table>

Water Year: 01-Oct-2019 through 03-May-2020

<table>
<thead>
<tr>
<th>Climate Division</th>
<th>Total Rainfall</th>
<th>Departure from Normal</th>
<th>Pct of Normal</th>
<th>Rank since 1921 (88 periods)</th>
<th>Driest on Record</th>
<th>Wettest on Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>19.70"</td>
<td>+1.40"</td>
<td>108%</td>
<td>24th wettest</td>
<td>8.20" (1958-59)</td>
<td>33.79" (1984-85)</td>
</tr>
<tr>
<td>S. Central</td>
<td>27.00"</td>
<td>+5.31"</td>
<td>124%</td>
<td>15th wettest</td>
<td>8.99" (1955-56)</td>
<td>36.20" (2015-16)</td>
</tr>
<tr>
<td>Statewide</td>
<td>21.38"</td>
<td>+3.21"</td>
<td>118%</td>
<td>17th wettest</td>
<td>8.69" (1995-96)</td>
<td>28.75" (1984-85)</td>
</tr>
</tbody>
</table>

Spring 01-Mar through 03-May-2020

<table>
<thead>
<tr>
<th>Climate Division</th>
<th>Total Rainfall</th>
<th>Departure from Normal</th>
<th>Pct of Normal</th>
<th>Rank since 1921 (88 periods)</th>
<th>Driest on Record</th>
<th>Wettest on Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Central</td>
<td>3.53"</td>
<td>-1.39"</td>
<td>72%</td>
<td>36th driest</td>
<td>0.41" (1996)</td>
<td>12.45" (1957)</td>
</tr>
<tr>
<td>Central</td>
<td>7.61"</td>
<td>+0.74"</td>
<td>111%</td>
<td>33rd wettest</td>
<td>1.50" (2005)</td>
<td>18.01" (1990)</td>
</tr>
<tr>
<td>S. Central</td>
<td>9.13"</td>
<td>+1.57"</td>
<td>121%</td>
<td>20th wettest</td>
<td>2.44" (2005)</td>
<td>24.64" (1990)</td>
</tr>
<tr>
<td>Statewide</td>
<td>7.63"</td>
<td>+1.01"</td>
<td>115%</td>
<td>32nd wettest</td>
<td>2.14" (1936)</td>
<td>15.19" (1990)</td>
</tr>
</tbody>
</table>

The climate divisions shown include statewide totals, central Oklahoma totals, and totals for the two divisions which have Canton Lake and Lake Atoka—major water sources for central Oklahoma.

http://climate.ok.gov/index.php/drought/last_30_days/
White areas are shown as EC (Equal Chance) on these maps represent areas where there are no strong climate signals from the climate tools to have skill in preferring one category over another.

That doesn’t mean that there are equal chances of each of the categories occurring – it means that currently there is no skill in identifying the most likely category. In these areas, it is best to be prepared for all possibilities.
This graph shows the cyclical nature of wet and drought periods in Oklahoma. The black dots represent the annual precipitation for that particular year. The line represents the annual precipitation data smoothed over five years.

This smoothed line shows well the wet periods (shaded green) and the drought periods (shaded brown). The drought cycles appear to average about five to eight years in length.
The Palmer Drought Index (PDI) maps show long-term (cumulative) meteorological drought and wet conditions. The maps show how the geographical pattern of the long-term (meteorological) moisture conditions has changed over the last 12 months.

On these maps, the red shading denotes drought conditions while the green shading indicates wet conditions.
Abnormal dryness or drought are currently affecting approximately 11,761 people in Oklahoma.

U.S. Drought Monitor

Oklahoma

Abnormal dryness or drought are currently affecting approximately 11,761 people in Oklahoma.

Intensity:
- D0 - Abnormally Dry
- D1 - Moderate Drought
- D2 - Severe Drought
- D3 - Extreme Drought
- D4 - Exceptional Drought

Drought Monitor Data

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>None</th>
<th>D0-D4</th>
<th>D1-D4</th>
<th>D2-D4</th>
<th>D3-D4</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>2020-04-28</td>
<td>85.96</td>
<td>14.04</td>
<td>3.94</td>
<td>2.27</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Last Week</td>
<td>2020-04-21</td>
<td>89.09</td>
<td>10.91</td>
<td>3.94</td>
<td>2.27</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3 Months Ago</td>
<td>2020-01-28</td>
<td>81.34</td>
<td>18.66</td>
<td>8.03</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Start of Calendar Year</td>
<td>2019-12-31</td>
<td>76.45</td>
<td>23.55</td>
<td>10.47</td>
<td>3.64</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Start of Water Year</td>
<td>2019-10-01</td>
<td>71.94</td>
<td>28.06</td>
<td>11.08</td>
<td>1.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>One Year Ago</td>
<td>2019-04-30</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
SOIL MOISTURE MAP

1-day Average 24-inch Fractional Water Index

May 3, 2020
Created 7:30:14 AM May 4, 2020 CDT. © Copyright 2020

1.0 - 0.8 Enhanced Growth
0.8 - 0.5 Limited Growth
0.5 - 0.3 Plants Wilting
0.3 - 0.1 Plants Dying
< 0.1 Barren Soil

http://www.mesonet.org/index.php/weather/map/24-inch_fractional_water_index/soil_moisture
CONSECUTIVE DAYS WITHOUT RAINFALL MAP

http://www.mesonet.org/index.php/weather/map/consecutive_days_with_less_than_0.25_inches_Rainfall/rainfall
The graph is the amount of water stored in five major lakes that supply water to central Oklahoma as a percent of capacity over the past year.
Oklahoma Surface Water Resources
Reservoir Levels and Storage as of 4/28/2020

Reservoir Storage
(Percent of Normal Pool Storage as of 4/28/2020)
- > 100%
- 100% - 90%
- 90% - 80%
- 80% - 70%
- 70% - 60%
- 60% - 50%
- 50% - 40%
- 40% - 30%
- < 30%

Reservoir Levels
1. Positive number indicates the lake level in feet, above the normal pool elevation
2. Negative number indicates the lake level in feet, below the normal pool elevation

This map shows reservoir storage as a percentage of normal pool storage capacity. The source information was collected from real-time lake gauges monitored by the U.S. Army Corps of Engineers (http://www.swec.usace.army.mil/Daily_Morning_Reservoir_Report.pdf), and the U.S. Geological Survey (http://waterdata.usgs.gov/ok/nwis/curr/?type=g&site_no=8307000). For more information please visit the OWRB’s website at:

https://www.owrb.ok.gov/supply/drought/reservoirstorage.php

acog
Groundwater Levels
Spencer Mesonet Station

http://www.mesonet.org/index.php/weather/groundwater
Recharge Map
Central Oklahoma Aquifer System

AQUIFER RECHARGE APRIL 2020

Recharge in Inches
- 0.0 - 0.1
- 0.1 - 0.2
- 0.2 - 0.3
- 0.3 - 0.4
- 0.4 - 0.5
- 0.5 - 0.6
- 0.6 - 0.7
- 0.7 - 0.8
- 0.8 - 0.9
- 0.9 - 1.0

Garber-Wellington Aquifer Limits
ENSO Cycle
Recent Evolution, Current Status and Predictions

ENSO Alert System Status: Not Active

- ENSO-neutral conditions are present.
- Equatorial sea surface temperatures (SSTs) are near-to-above average across most of the Pacific Ocean.
- The tropical atmospheric circulation is consistent with ENSO-neutral.
- ENSO-neutral is favored for the Northern Hemisphere summer 2020 (~60% chance), remaining the most likely outcome through autumn.

https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.ppt